DIMENSIONS OF FIELD PREPARATION FOR DATA-INTENSIVE AGRICULTURAL RESEARCH

Emma Cavazzoni

ISH

22 July 2026

Porto

OUTLINE

- Working in the field, adapting instruments and methods
- Aim: unravelling the complexities of preparing the field for automated data-intensive agricultural research
- Case study: Haly.Id
- Three dimensions influencing field preparation: environment, social relations, methods
- Differences with other types of preparation (fossil construction and non-data-intensive research)
- Conclusions

WORKING IN THE (AGRICULTURAL) FIELD

- Researchers work on nature's terms (Knorr-Cetina 1992)
 - Study of whole organisms
 - Natural objects remain anchored in their environment
 - Events must be dealt with as they occur
- Field and organisms co-exist with other life forms (Latour 1983)
- Fields serve multiple purposes
- Fields are dynamic, unpredictable, and shaped by local history (Kholer 2002)

- Field workers must adapt them to unpredictable, violent conditions of nature
 - waterproof, lightweight, portable, robust, easy to use, able to respond to complex variable combinations

THE NEED TO ADAPT THE FIELD TO INSTRUMENTS AND METHODS

- The field is transformed to fit lab instruments and methods (Latour 1983)
- Fields are selected and manipulated: isolating variables, structuring space, controlling growth (Kohler 2002)
- Example: New Zeeland apple orchards adapted for automation (Legun and Burch 2021)
- Yet, some elements resist adjustments (e.g., soil fertility, soil type, tree vigour)

Continuous, dynamic interplay between field and technologies, each reshaping the other to achieve a workable

AIM

- Unravel the complexities of preparing the field for automated dataintensive agricultural research
- Activity that plays a pivotal role in laying the foundation for meaningful research outcomes
- Yet, it is not always acknowledged as scientific labour (Shapin 1989)
- It involves the meticulous construction of objects that can be investigated and used to investigate
- Process influenced by three dimensions environment, social relations, methods

CASE STUDY: HALY.ID

Haly.Id develops an automated system generating large datasets to monitor the damage inflicted by *Halyomorpha halys* (*H. halys*) (Ferrari et al. 2023)

Different objects – technological (drone, camera trap, sensors, RGB cameras, NIR-HIS) and natural (trees, pears, *H. halys*)

HALY.ID'S SELECTION AND ADAPTATION: INITIAL DESIGN

	Field	Technologies
Selection	 Organic – no pesticides Internet connection Farmer's passion for technologies Farmer's alternative income 	 Drone flying above the orchard Drone not disturbing H. halys Precise GPS
Adaptation	Plastic markers around treesChannels in the soil for wires	 Drone stopping at specific points based on field characteristics NIR-HSI adapted to pears

DIMENSION 1: ENVIRONMENT

- Unpredictable weather patterns (e.g., hail, rain, heat)
- Complex environmental interactions (e.g., other organisms and diseases)
- Limited control (e.g., temperature, humidity, visitors)
- Unpredictable human impact (e.g., hosting farmers' changing priorities, watering patterns, fertilization regime)

DIMENSION 2: SOCIAL RELATIONS

- Skills distinctively of the field needed
 - Ensuring steady data
 - Managing the unexpected
- Absence of standard protocols, formal training, or publications
- "Jack of all trades": adaptability and cross expertise
- Division and integration of labour and expertise

DIMENSION 3: METHODS

- Decisions regarding:
 - Which biological aspects to monitor
 - how to align tech with field elements
 - how to tailor data collection to lab instruments

... greatly influence field preparation and object construction

 Haly.Id: system had to be both technically feasible and compatible with existing pest control methods

HALY.ID'S SELECTION AND ADAPTATION: FIELD PRACTICE

	Field	Technologies
Selection	 Organic – no pesticides Internet connection Farmer's passion for technologies Farmer's alternative income 	 Drone flying above the orchard Drone not disturbing H. halys Precise GPS
Adaptation	 Plastic markers around trees Channels in the soil for wires Exclusion cages around pears Freezing days and local floodings Entomologists lacking technical knowledge Different setups in different fields 	 Drone stopping at specific points based on field characteristics NIR-HSI adapted to pears Camera trap withstanding high temperatures Computer scientsts lacking entomological knowledge Loss of farmers' input

"PREPARING" THE FIELD

- Preparation involving the meticolous selection and adaptation of objects – natural and technological
- Environment, social relations, and methods dimensions influencing the preparation of field and technologies to be investigated and to investigate
- Ultimately, these shape how scientists and the rest of us understand the world

"PREPARATION" IN CONTEXT

"Preparing evidence involves 'transform[ing]' materials to achieve physical and epistemic goals (e.g., [...] a data set that has been cleaned and formatted for a particular study)" (Wylie 2021: 8-9)

- Adaptation and iteration of objects, ideas and work
- Fossils are prepared for research: e.g., cleaned, repaired, reconstructed (Wylie 2015)
- Typically carried out in labs, isolated from the environment

VS

 Field preparation is highly situated — shaped by environment, social relations, and methods

RISK OF PRIORITIZING DATA OVER BIOLOGY

Dimensions shape automated data-intensive agriculture, focusing heavily on data production and technological advancement

BUT

Risk of side-lining, at least for the moment, biological knowledge and context needed for field application (Cavazzoni and Leonelli forthcoming)

 Haly.Id collecting extensive data via camera which, entomologically speaking, is unnecessary – field knowledge overlooked

CONCLUSIONS

 Field preparation and object construction shaped by social relations, environment, and methods

- Requires adaptation between field and lab elements
 - Reconceptualizing "preparation" as key research stage
 - Balance domain knowledge, material settings, and tech in data-intensive agricultural research
 - Reassessing expertise and hierarchies to achieve that balance (e.g., via transdisciplinarity – Cavazzoni et al. 2025).

THANK YOU, EVERYONE!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 101001145)

Bibliography

- Burch, K. A., and Legun, K. 2021. "Overcoming Barriers to Including Agricultural Workers in the Co-Design of New AgTech: Lessons from a COVID-19-Present World." *Journal of Rural Studies* 82 (2021) 380–390.
- Cavazzoni, E., et al. 2025. "Monitoring technology for pest-plant interactions: The need for transdisciplinary research design." EMBO reports.
- Ferrari, V., Calvini, R., Boom, B., Menozzi, C., Rangarajan, A., Maistrello, L., Offermans, P., and Ulrici, A. 2023. "Evaluation of the Potential of Near Infrared Hyperspectral Imaging for Monitoring the Invasive Brown Marmorated Stink Bug." *Chemometrics and Intelligent Laboratory Systems* 234 (January): 104751.
- Knorr-Cetina, Karin. 1992. "The Couch, the Cathedral, and the Laboratory: On the Relationship Between Experiment and Laboratory in Science'." In *Science as Practice and Culture*, edited by Andrew Pickering. University of Chicago Press.
- Kohler, Robert E. 2002. *Landscapes and Labscapes: Exploring the Lab-Field Border in Biology*. Chicago, IL: University of Chicago Press.
- Latour, B. 1983. "Give me a laboratory and I will move the world." In Knorr-Cetina, K. and Mulkay, M. (editors) *Science Observed*, London: Sage, 141-170.
- Shapin, S.1989. The invisible technician. *American Scientist* 77(6): 554–563.
- Wylie, C.D. 2021. Preparing Dinosaurs: The Work Behind the Scenes." Cambridge, Mass: The MIT press.
- Wylie, C.D. 2015 "The artist's piece is already in the stone": Constructing creativity in paleontology laboratories', Social Studies of Science, 45(1), pp. 31–55.