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What is ‘Space’ as an Environment for Plant Biology Experiments?
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Biology wrapped in hardware
obeying the laws of physics
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Radishes growing in the Advanced Plant Habitat on board

the ISS. Photo: NASA
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Reconstruction of the BRIC-19 experiment. Castafio and Leonelli (forthcoming). Pre-flight timeline for the BRIC-19 experiment. Figure
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Reconstruction of the BRIC-19 experiment. Castafio and Leonelli (forthcoming). Photos 7, 8, 10-12: NASA 2014. Photo 9: NASA
Kennedy Space Center 2019. All quotations describing the protocols from Choi et al. 2019
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Reconstruction of the BRIC-19 experiment. Castafio and Leonelli (forthcoming). Post-Flight timeline for BRIC-19 experiment. Figure by
authors. Photo 13: Swanson 2014. All quotations describing the protocols from Choi et al. 2019.




Environmental Factors )
Treatment type: Spaceflight /Ground control

Growth Environment: ISS / ISS Environmental Simulator
Gravity: Microgravity / 1G Earth
Atmospheric Pressure: Ambient
Radiation: Cosmic Radiation / Background Earth
Growth Temperature: 24°C

Experimental Design Operational Constraints

Organism: Arabidopsis thaliana Hardware: BRIC
Genotype: WT Tissue: Etiolated seedling
Ecotype: WS-2, Ler-0, Cvi-0, Col-0 Age at harvest: 12 days
Canister and position : Letter/Number Light: Dark
Sample Storage Method: -80°C
Sample preservation method: RNA later

Castano and Leonelli (forthcoming)




“Scaling up”

NASA, 2017 Robert McCall, 1986
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communications biology
Article Open access Published: 12 May 2022
Plants grown in Apollo lunar regolith present stress-

associated transcriptomes that inform prospects for
lunar exploration

Anna-Lisa Paul &, Stephen M. Elardo & Robert Ferl &

12 grams total

4g Apollo 11
4g Apollo 12
4g Apollo 17

Slides by Ana Lisa Paul from lecture “Growing Insight into Space: Plants are Enablers of Extraterrestrial Exploration”.
Space Science Week — National Academies of Science, Engineering and Medicine, March 2024




Slides by Ana Lisa Paul from lecture “Growing Insight into Space: Plants are Enablers of Extraterrestrial Exploration”.
Space Science Week — National Academies of Science, Engineering and Medicine, March 2024




Paul et al 2022

Apollo 17

“Terrestrial plants are capable of
growth in lunar regolith as the
primary support matrix. Soils
derived from lunar regolith could
therefore be used for plant
production and experiments on the
Moon. However, these data also
demonstrated that lunar regolith

was nhot a benign growth substrate”
(Paulet al. 2022, 6) .

The plants ‘interpreted’ “lunar soils
as highly ionic [similar to plant
reactions to salt, metal and reactive
oxygen species] and as eliciting
oxidative stress.”




= Effect of elevated radiation and LEAF - Lunar Effects on Agricultural Flora
l.OW gravity on grOWth, Goal: Investigate Lunar surface environment effects on short-term

organism-wide physiological responses of model space crops.

photosynthetic prOd UCtiVity a nd Objectives: Grow model space crops in Lunar & Earth environments and

identify phenotype differences ( via remote monitoring) and

n Utr|t| ona l q ua |.|ty? biomolecular differences (via returned sample analysis)

Comparative resilience amongst

the crops.

Genomic traits that afford stress-
resilience and space crop fitness
Main Payload Main Payload + Base Stand

fO r S pa Ce. (Stowed) (Deployed) Payload Concept (sans MLI & solar shield)

Slide by Christine Escobar, 2024




7 MIN READ

4 MIN READ

Scientists Grow Plants in NASA Selects First Lunar
Instruments for Artemis
Astronaut Deployment

Lunar Soil

Rob Ferl, left, and Anna-Lisa Paul looking at the plates filled part with lunar soil and part with control soils, now under LED

growing lights. At the time, the scientists did not know if the seeds would even germinate in lunar soil.

UF/IFAS photo by Tyler Jones Artist's concept of an Artemis astronaut deploying an instrument on the lunar surface.
Credits: NASA

NASA, 2022 NASA, 2024




“Plants allow us to be explorers”,

“When humans move as civilizations,

we always take our agriculture with

»

us.
Who and how?

How to characterize this ‘more
complicated’ Lunar environment?

How do these scientists position
themselves in the new context of
Lunar exploration?

Futurism, 2014




How to characterize this
key moment of transition in
the plant space biology
research program?

Screenshot News Clip about LEAF Experiment, 2024

Lines of explanation: strategic response to incentives
(“funding goes to the Moon = researchers go to the Moon”
(Bourdieu 1975, Foster and Evans 2015), changes in theories,
technologies.

Shift in the understanding of environmental parameters and
their biological effects, more intricate experimental designs,
even less control in operations.

Shift in the organizational practices and actors (Fuchs 1993)
- Academia, industry, space agencies from different
countries. New task uncertainties, interdependencies, and
new lines of accountability.

Shift in the integration of expertise = Return of ecology in
relation to plant experimentation.

Normative shift 2> New questions about the ethical
dimensions of this research.




= How do plant space scientists understand
responsible research practice in relation to their
science, human habitation on the Moon,
environmental damage, and commercial exploitation?

Motivations for my next project: Understand these
shifts in the experimental program in dialogue with the
scientific community and find pathways to embed
responsible research practices within it.

CARTH g O @:

WHERE THE AIR IS FREE and BREATHING IS EASY

NASA Jet Propulsion Laboratory,
2015
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